
Implementation of Repositories in TOSCA-Parser

Mrs T.L.Priyadarsini#1, Vemula Nandini*2, Mr Tadepalli Srinivas#3, Mr Sahdev Zala*4

1 Assistant Professor, Department of Computer Science and Engineering

VNR Vignana Jyothi Institute of Engineering& Technology
Bachupalli, Nizampet Hyderabad, Telengana, INDIA

2M.Tech CSE, Department of Computer Science and Engineering

VNR Vignana Jyothi Institute of Engineering& Technology
Bachupalli, Nizampet Hyderabad, Telengana, INDIA

3Solution Architect, Team Lead

NextGen R&D, TCS,Hyderabad, INDIA

4Advisory Software EngineerIBM

Abstract— Topology and Orchestration Specification for
Cloud Application (TOSCA), is an OASIS open standard
provides new ways to enable portable automated deployment
of and management of composite applications. TOSCA
captures the description of cloud applications and
infrastructure services, the relationship between parts of the
services and operational behaviour of these services (e.g.,
Deployment, Configuration, Patch etc.). TOSCA support
service template to ported applications over alternative cloud
environments so that the services remain interoperable.
TOSCA-Parser is a parser for TOSCA simple Profile in
YAML. TOSCA has been using the notion of Containers from
the very beginning, now TOSCA Committee adding some
specific modelling TOSCA capabilities for PaaS Containers,
such as ability to link to distributed Repositories, i.e.,
implementing the feature Repositories in TOSCA-Parser.
Repository is a named external Repository which contains
deployment and implementation artifacts that referenced
within the TOSCA Service Template.

Keywords— TOSCA, Containers, Repositories and
Artifacts.

I. INTRODUCTION

A. OpenStack

OpenStack is a free and open-source software
platform for cloud computing, that is mainly deployed as
an Infrastructure-as-a-Service (IaaS). OpenStack is a cloud
operating system that controls large pools of compute,
storage and networking resources that are managed
through dashboard that gives administrators control while
empowering their users to provision resources through a
web interface.

B. HEAT

HEAT is an orchestration program to implement
orchestration engine in order to launch multiple cloud
applications for OpenStack. HEAT provides both a Cloud

Formation-compatible Query API and an OpenStack-
native ReST API.

C. HEAT-Translator

HEAT-Translator is project that is developed after
LIBERTY release of an OpenStack. The project got split in
to TOSCA-Parser and HEAT-Translator after LIBERTY
release. Concept behind the development of HEAT-
Translator is to translate the Non HEAT (TOSCA)
templates to Heat Orchestration Template (HOT) files.
Here Non HEAT files are translated to HOT files because
these HOT files are deployed in OpenStack. Heat-
Translator also support different template formats other
that TOSCA templates.
HEAT-Translator tool takes an in-memory graph from
TOSCA Parser as an input, maps it to HEAT resources and
then produces a HOT.
Figure 1shows the Architecture of HEAT-Translator.

FigureI.1: Architecture of HEAT-Translator

T.L.Priyadarsini et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (5) , 2016,2326-2328

www.ijcsit.com 2326

D. TOSCA

TOSCA is a new open cloud standard constitutes
a unique eco-system, which is supported by a large number
of international industry leaders. TOSCA is an OASIS
open standard that defines the interoperable description of
services and applications hosted on the cloud and
elsewhere, including their components, relationships,
dependencies, requirements and capabilities, thereby
enabling portability and automated management across
cloud providers regardless of underlying platform or
infrastructure, thus expanding customer choice, improving
reliability, reducing cost and time-to-value. TOSCA
enables an eco-system where service providers can
compete and Differentiate to add value to Your
Applications. TOSCA supports automated matching of
application requirements to provider capabilities. TOSCA
is a non HEAT template standard that is accepted by all
cloud providers. TOSCA follows certain standards in
writing the templates. If a template is developed according
to TOSCA standards then no need of developing a separate
template in case of migration from one cloud to other
cloud.
TOSCA addresses critical cloud challenges:
 Speed and accuracy moving apps to Cloud
 Consumer Choice of Cloud vendor and technology
 Agility adapting to change (Business and IT)

II. TOSCA-PARSER

A. TOSCA-Parser

TOSCA-Parser is a project that is developed after
LIBERTY release of an OpenStack. TOSCA-Parser is a
parser that is developed for parsing TOSCA simple profiles
that are written in YAML. It takes the Input as a service
template after on successful validation a memory line
graph is produced as an output. The service Template that
is passed as an input is written in TOSCA standards. It
creates a line graph of nodes and their relationships.
TOSCA-Parser is a parser for TOSCA simple Profile in
YAML.

B. TOSCA Template

Topology template defines the structure of a service. It
is also known as topology model of a service. Plans are the
process models that are used for service life cycle. Plans
are used to create, terminate and manage the service
through its life time. Topology template consists of
relationship templates and node templates together
constitute a topology template which may not be a directed
graph all time. Every node in the memory graph is
represented as a node type in the node template. Node type
defines the properties of node like computing, operations
that are required to manipulate the components. Node
types are defined independently in order to reuse the
components. Relationship templates specify the
occurrences of relationships between the nodes in a
topology template. Relationship types are defined
independently for reuse purpose. Service template that is
created is an instance for deployed service. These are
derived by instantiating topology and service template.

Process model contains tasks that refer to operations of
interfaces of nodes and relationship templates.

Figure 2 shows the arrangement of a service template.

Figure 2: Service Template

III. REPOSITORIES

 A Repository definition defines a named external
repository which contains deployment and implementation
artifacts that are referenced within the TOSCA Service
Template.
List of recognized key names for a TOSCA repository
definition:
 Description: The optional description for the

repository.
 URL: The required URL or network address used to

access the repository.
 Credential: The optional Credential used to

authorize access to the repository.

Single line Grammar:

<repository_name>: <repository_address>

Multi line Grammar:

<repository_name>:
description: <repository_description>
url: <repository_address>
credential: <authorization_credential>

repository_name: represents the required symbolic name
of the repository as a string.
repository_description: contains an optional description
of the repository.
repository_address: represents the required URL of the
repository as a string.
authorization_credential: represents the optional
credentials (e.g., user ID and password) used to authorize
access to the repository.

T.L.Priyadarsini et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (5) , 2016,2326-2328

www.ijcsit.com 2327

A. Repositories Design and Implementation

Figure 3: Static view for Repositories Implementation

Initially when TOSCA Template is run, providing template
as an input file then the execution starts from the shell.py
main function from there which is moved to the
Toscatemplate.py file where the repositories class is being
called if the parser is met with the repositories key word in
the template. All the fields in the repositories section are
being validated and then if the parser encounters with
import keyword then it is directed to the import file where
the fields are validated and loaded If in imports if
repository is present then again it is directed to the
repository file and it is validated and after on successful
validation output is produced.

IV. REPOSITORIES IN SERVICE TEMPLATE

Figure 4 shows the service template with Repositories.

Figure 4: Template with Repositories

In figure 4 service or Tosca template with Repositories
section along with imports is included.

Figure 5 shows the Output of the Repositories in TOSCA-
Parser.

Figure 5: Output of Repositories

V. NEED FOR REPOSITORIES

 Using repositories section in the service template we
can import the various templates that are defined
already and stored in repository.

 Import section of the service Template use the
repositories feature and imports the templates that
exists in repository.

 Artifacts also use the repositories feature in their
definition.

VI. CONCLUSION

In this paper, Repositories feature in TOSCA-
Parser is implemented and the repositories are included in
the TOSCA-Template along with import sections included.
On Successful validation of the Template output is
produced. Repositories can also be referenced with
artifacts.

ACKNOWLEDGMENT
I would like to express my gratitude to all those

who gave me the possibility to complete this thesis. It
gives me immense pleasure to acknowledge all my team
members who have really share their best experiences with
me while writing this paper.

I would like to sincerely thank all those who have
read this paper and provided me with their valuable inputs
and suggestions. I want to thank them for all their support,
interest and valuable hints.

REFERENCES
[1] https://www.oasis-

open.org/committees/download.php/56826/OpenStack%202015%20
Tokyo%20Summit%20-%20TOSCA-and-HEAT-Translator-
TechTalk.pdf

[2] https://www.oasis-
open.org/committees/download.php/56126/TOSCA%20Technical%
20Marketing%20Slides%20OSCON%202015%20SpeakerScipt-
V0_3-20150719.docx

[3] http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-
YAML/v1.0/csprd01/TOSCA-Simple-Profile-YAML-v1.0-
csprd01.html

T.L.Priyadarsini et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (5) , 2016,2326-2328

www.ijcsit.com 2328

